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Abstract. We consider one lype of gauge-invariant anyon opentors from the complex scalar 
field theory minimally coupled to the Chem-Simons term in 2 t 1 dimensions. In lhe Coulomb 
gauge condition, the anyonicity of operators, lhe multi-valued states, and the spin-stalistics 
rela!ion are derived by considering the proper distribution function. which appears in the 
definition of anyon operators. It is shown that the anyoniciiy is not a gauge artifact by also 
obtaining it in lhe covariant gauge. 

1. Introduction 

Fractional spin and statistics are particular features only in two spatial dimensions and the 
excitations exhibiting them are called anyons [I]. They have attracted much attention due 
to their possibile relevance to condensed matter phenomena, especially to the fractional 
quantum Hall effect [Z] and high-T, superconductivity [3]. Theoretical understanding 
of them has been gained in the context of both quantum mechanics and quantum field 
theory [4]. So far, development in the direction of field theory has not progressed as far as 
that of quantum mechanics. In the study of anyons at the field-theoretical level, the Abelian 
Chem-Simons (a) theory minimally coupled to the matter fields is usually considered as 
the base system, and the existence of anyonic excitations is investigated as the first task. 
Such a task may be related to the problem of constructing the composite operator, which 
exhibits the anyonic properties, from the fundamental field variables of the base system. If 
the composite operator is properly constructed, it becomes the so-called anyon field operator. 

In the canonical Hamiltonian formalism, anyon states are created by anyon operators 
acting on the vacuum state and should be physical such that the results obtained based 
on them are physically meaningful. This implies that the anyon operators should also 
be physical. In addition to this, the gauge invariance of the anyon operator has been 
emphasized [5 ] .  

Recently, one type of gauge-invariant anyon operator has been suggested and 
investigated based on the Maxwell-Chem-Simons theory in the axiomatic [6] and 
canonical [7] approach. The properties of anyon operators have been obtained in the 
covariant gauge condition. Because of its gauge invariance, it is expected that the same 
results could also be obtained in other gauges, especially in the Coulomb gauge. However, 
it does not seem so obvious since, for example, the algebraic and constraint structures of 
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the cs theory in the Coulomb gauge are considerably different from those in the covariant 
gauge. Therefore, in order to give more concrete argument on the anyon operator, it is 
necessary to establish whether the properties of it are gauge independent. In the matter- 
coupled CS theory, the difference between the covariant and the Coulomb gauge condition 
is distinct. The features of the covariant gauge are that the gauge field, while it commutes 
with the matter fields, does not commute with itself, due to the symplectic structure, and the 
Gauss-law constraint is obeyed not strongly but weakly; that is, it leads to zero acting on the 
physical state. Here we note that, in the covariant gauge, the Gauss-law constraint is realized 
by the generator of Becchi-Rouet-Stora-'Qutin (BRST) symmetry, the BRST charge [SI. In 
the Coulomb gauge, a typical non-covariant gauge, the situation is completely reversed; the 
gauge field does no longer commute with the matter fields while it commutes with itself, 
and the Gauss law can be imposed strongly to zero, as will be shown in the later section. 

In this paper, we consider the composite operators whose form is that suggested in [6,7] 
for the study on the gauge-invariant anyon operators and take, as the base system, the 
complex scalar field theory minimally coupled to the cs term, which is given by 
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(1) 
K L = (D,@)*D'@ + -€""'AA,aUAi 4n 

where D, = a, - iA, and t ~ l ~  = 1. It is invariant under the U(1) gauge transformations 

@(I) + e'"("'@(x) A,(x)  + A p ( x )  + a,A(x) (2) 

where it is assumed that the transformation function A has vanishing boundary condition 
at infinity; A(o0) = 0. 

The remaining sections of this paper are composed as follows. In section 2. the system 
(1) is quantized in the Coulomb gauge. One type of gauge-invariant composite operator 
is considered as the candidate for the anyon operator in section 3. We investigate the 
anyonicity of it and prove the generalized spin-statistics relation in section 4 .  Finally, in 
section 5 ,  we show that the anyonicity obtained in section 4 is also valid in the Lorentz 
covariant gauge, and give conclusions. 

2. Quantization 

We quantize the system (1) in the Hamiltonian formulation. Because the system (1) 
possesses constraints, we will adopt the Dirac quantization procedure [9] to treat them 
and work out in the Coulomb gauge. 

The Hamiltonian density corresponding to the system (1) is 

) (3) 
K .. x = n n* - ( D ~ ~ ) * D ' @  - (-G'JaiAj - 

2% 

where il (IT) is the canonical momentum conjugate to the 4 (V) field, JO = i(n@-@'n*) 
is the charge density of the matter field, and t i j  = eoij. The canonical momenta conjugate 
to A0 and Ai are no 0 and ni = ( ~ / 4 n ) € i j A j ,  respectively. The primary constraints are 

(4) 
K r. - n .  - -cijAJ = O  (i. j =  1,2) 47r ro = no c o  I -  , 

and the secondary constraint is 

( 5 )  
K .. r, = --6'JaiAj - J~ = o 

27 
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which is just the Gauss-law constraint. After fixing the gauge (Coulomb gauge) we obtain 
the additional constraints involving the gauge condition as follows: 

r., = aiAi  = o (6) 

(7) 
2n rs = -v*A, + --EijaiJj = o 
K 

where v2 = -aiai and Jj = i(Dj@)*@ - i@*(Dj@). These conditions and those of (4) 
and (5) form a fully second class, and therefore one is now ready to introduce the Dirac 
brackets, [ , ) D ,  and obtain the equal-time commutators through the replacement of { , }D 
by -i[, 1. Here it should be noted that we treat ro and rs independently from the other 
constraints and solve them directly. This is a safe treatment since the constraint themselves 
except ro and rs form a fully second class. Then the non-vanishing equal-timecommutators 
are as follows: 

[@(z), n(y)l= is(% - Y) 
[@*(@, n*(y)] = is(z - y) 

237 
[@(z), = --@(z)6ijaiG(e - Y) 

K 

where G ( z  - y) is the Green function in two spatial dimensions which satisfies @G(z) = 
-S(z) and has the form G(z)  = -(l/2n) lnplzl, where p is the infrared cutoff. Here it 
should be noted that 6ijajG in the above commutation relations is ill defined at the origin. 
To resolve this ill-definedness, we follow the prescription of Jackiw and Pi [lo] that #G 
vanishes at the origin by taking a certain regularization which preserves the anti-symmehic 
property of it under the space reflection. 

3. Composite operators 

For the construction of the gauge-invariant anyon operators, we consider the composite 
operator which is defined by 

(9) 1 &x) = @ ( x )  exp -I dZy Di(z - y) Ai(x0. y) ( .s 
where D‘ is the distribution function which makes 4 gauge invariant and not yet determined. 
Requiring the invariance of 4 under the gauge transformation (Z), we obtain the equation 
that Di must satisfy as follows: 

a,YDi(z - 21) = -S(Z - y) . (10) 

We note that, in the covariant gauge, this equation also ensures the invariance of & x )  under 
the BRST transformation [Ill.  
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In order to obtain the solution of (IO) which is appropriate to the purpose of this paper, 
we now follow the solution given in [7, 111 and briefly review it in a self-contained manner. 
In momentum space, the parametrized solution of (10) is 

where q is a parameter which parametrizes the solutions, n = (cosq, sinrp). and r(q) is a 
density function which satisfies JFdqr(rp) = 1. Then the Fourier transformation of (11) 
leads to the solution in configuration space as follows: 

The support properties of D' are determined by the density r. If we let the support of r be 

suppr(q)=[wl,a2] O < w ~ - c x ~  < a  

w = {(lzl cosrp, 1x1 sinq) E W2 : 011 < q < 0 1 2 ) .  

then the support of D' is given by the wedge as follows: 

Now we are interested in the case in which the wedge W degenerates into a space-like 
string S. In this case, the distribution function D' may be represented by using any weakly 
convergent sequence of densities {ra(q) : a = 1.2, . . .) such that 

lim r.(q) = 6(rp - w) 0 < 01 < 2a  (13) 
0-cn 

where 01 specifies the direction of the string S. Here we take w = n for convenience. Let us 
perform the integration in (12) by using (13) and cx = R to know what form the distribution 
D' takes. Then we obtain 

D'(z) = -si1e(-x1)s(x2) (14) 

where B is the step function. Apparently, this satisfies (IO) and describes the infinitely long 
spacelike string sitting at the negative xl-axis. Returning to the definition of 4 (9), one 
finds that this makes the operator q5 into an object localized in a space-like string. 

4. Anyonicity and the spin-statistics relation 

To study the anyonicity of composite operators and the spin-statistics relation, we first 
obtain the charge and magnetic flux carried by the operator (9). By definition, the charge 
and magnetic flux operators are given by 

Q = Jd'x JO 

respectively. Using the commutators ( S ) ,  we derive 

[ Q, &x)  1 = & x )  

(18) 

which imply that the operator 4 carries one unit of positive charge and magnetic flux of 
amount ~ x / K .  Now we regard 6 as the creation operator of one antiparticle, and one (anti) 

2a  A 

[ @, & x )  1 = x4Cx) 
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particle state as canying one unit of (positive) negative charge following [12]. Then $ is the 
operator which creates the physical oneantiparticle state canying charge and magnetic flux 
from the vacuum, and shows some aspect of the prototypical quantum mechanical anyon 
by Wilczek [ 11. 

The statistics obeyed by the operator $ may be measured by considering the process of 
exchanging two operators in the product $(z)$(y). By using the definition (9) of a and 
the commutators (8), we obtain 

$(z)&y) = e x p ( i F  Jdzz D'(z - r ) s i ja iG(z  - y)) 

X exp -i(2n/K) dZz D i ( y  - %)€jjaiG(% - 2) $(y)$(Z). (1% 

The integration in the exponential factor of (19) is easily performed by substituting the 
solution (12) for D' and taking (13) at the final step, and the result of the integration is 

( J  1 
1 ] y z - x z  

d2z D'(z - z ) t i j a / G ( z  - y) = -tan- - J 27Z y' - x1 

which is just the angle function. Now we define 

1 ] X 2 - y *  @(a: - y) = -tan- - - I '  2 H  Y 
Then equation (19) becomes 

- - e*'"'"$(y)$(z) (22) 

where the following relation is used: 

@(U -2) - O(Z - y) = hi. (23) 

The sign ambiguity in (22) stems from the fact that the function tan-' is defined only in 
modulo 2n. In a physical sense, this corresponds to the two possible ways of rotation of 
one particle around the other, namely clockwise and anticlockwise rotation. In the former 
(latter) case the sign in (22) is minus (plus). 

We are now in a position to discuss the statistics of the operator $. From the graded 
commutation relation (ZZ), it follows that the cs coefficient K determines the statistics of $ 
and thus the operator $ may obey arbiwary statistics since there are no restrictions to the 
value of K .  As particular cases, if K is taken as 

then equation (22) becomes the anticommutation relation and hence the operator $ obeys 
Fermi statistics. If K is taken as 

the operator 6 obeys Bose statistics. 
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The graded commutation relations such as (22) may be obtained for the other gauge- 
invariant composite operators defined by 

d2y D'(z - y)Ai(xo,y) (26) 

dzyDi(z -y)Ai(x~,y))n(X) (27) 

ir*(x)=n*(x)exp d2yDi(z-y)Ai(x0.y) (28) 

Through the same-procedure up to (22). we obtain the graded commutation relations between 
operators 4, p, ll, and fP as follows: 

&a)&) - e*"/"&y)&z) = o 
&z)p(y) - e~'r'K@(y)&z) = o 
$(z)iryy) - e*r/Kft'(y)&z) = o 
fi(z)ii*(y) - eT'"/"ir*(y)ii(z) = o 
&z)ii(y) - eTin/"fi(y)&z) = iJ(z - y) 

where we have rewritten (22) for summary. 
It is not obvious whether or not the statistics interpretation given above is correct 

and consistent. In order to clarify this point, we first consider the definition of statistics by 
looking at the state functional. The general form of the N-particle state functional following 
from the representation theory of the braid group is given by 

WO [@*(zl)>, , . ?  @(=NI; t ]  

where W&#P(el), , ..,@*(IN); t ]  is an N-particle state functional with Bose statistics and 
c is, by definition, the statistics [12].  For the integer values of U, the state functional (30) 
describes the N particles with Bose statistics. Also, for the half-integer values of U, (30) 
describes the N particles with Fermi statistics. Now we construct the N-particle state by 
acting the operator @ N times on the vacuum and comparing it with the state functional (30).  
The N-particle state IN) is constructed as 

In order to relate the state IN) to (30). we change the form of IN) to that of (30). Here we 
note that the following Baker-Campbell-Hausdom formula is useful: 
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where the commutators (8) and (20) are used. Using this formula, we rewrite the N-particle 
state IN) as 

The expression enclosed in the curly braces is gauge invariant and independent of 
interchanges of any number of coordinates. Thus it is an N-particle state with Bose statistics 
and hence may correspond to QO of (30). For the remaining expression containing the 
function 0, the correspondence between (30) and (33) gives a relation naturally between 
the statistics U and the cs coefficient K as follows: 

1 
2K 

U = - - - - .  (34) 

With this relation, we may now check whether the statistics interpretation given by the 
values of K ,  in particular by (24) and (25), is correct. For the case of Fermi statistics, 
U takes Mf-integer values and these just lead to the values of K in (24) for which our 
composite operators satisfy the anticommutation relations. While, for the case of Bose 
statistics, U takes integer values and these lead to (25). Therefore it becomes clear that the 
statistics interpretation given by the values of K is correct. 

The N-particle state (33) is multi-valued due to the presence of function 0. Introducing 
complex coordinates zi = x /  + ix;, the multi-valuedness of IN) may become more 
transparent as follows: 

IN) = n ( z i  - zj)-”’~ single-valued) . (35) 
i < j  

This state is similar to that constructed from Laughlin’s ansatz [13]. 
So far, it has been shown that the gauge-invariant composite operator considered here 

obeys the generalized statistics and leads to the multi-valued, N-particle states which 
have the same form as those following from the representation theory of the braid group. 
Therefore, it may be concluded that the operator @ is the anyon field operator. 

In connection with the generalized spin-statistics relation, we now compute the spins of 
one-particle (anyon) state 4’10) and connect the result with relation (34). For this purpose, 
we first construct the angular momentum operator L which is defined by 

L = d2x ~“xiToj (36) 

where TO, is an element of the symmetric energy-momentum tensor. The symmetric energy- 
momentum tensor for the system (1) is derived from 

s 

Hence 
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Since the solution of the Gauss-law r3 is given by 

Jae Kwm Kim et a1 

after substituting this solution into (38) and performing some manipulations following the 
usual manner [14], we finally obtain 

where the first term on the right-hand side is the canonical angular momentum operator and 
the second is the anomalous one which is interpreted as a spin operator [14]. Since these 
two terms commute with each other we may treat them independently, and concentrate only 
on the spin operator in order to obtain the spin of the oneparticle state. 

Now we denote the spin operator by S: S = &Qz. Then, if we rotate the one-particle 
state with S, we obtain 

, i S S p p )  = &l/W,$*p) (41) 

(42) 

where 8 is the rotation parameter. The eigenvalue of the spin operator S is the spin s, and 
thus we obtain a relation between the spin s and the cs coefficient K, namely 

1 
s = - .  

2K 
We now take 8 as 2n. For K = 1/(2n + 1) (n E Z), the one-particle state picks up a minus 
sign implying that it is fermionic, and these values of K let the spin s take half-integer 
values as seen from the relation (42). While, for K = 1/2n (n E Z), the oneparticle state 
does not change and hence it becomes bosonic, and the spin s takes integer values. For the 
other values of K ,  the state becomes anyonic and the spin s is fractional. 

All the arguments given here are in complete agreement with those for the statistics 
interpretation, in particular for the Fermi (24) and Bose (25) statistics. Thus we now have 
the consistent and correct interpretation for the spin and statistics starting from the gauge- 
invariant anyon operator $. Furthermore, by comparing the relations (34) and (42), we can 
obtain a new relation as follows: 

a = - S .  (43) 
This establishes a generalized spin-statistics relation and is the same as that concluded in 
a work by Forte and Jolicceur [la], in which this relation was obtained by studying the 
symmetry structure of the relativistic field theory whose Fock states provide a multi-valued 
representation of the Poincar.4 group. 

5. Discussion and conclusion 

In the Hamiltonian framework, we have shown that the gauge-invariant composite operator ,$ 
satisfies the anyonic properties, and proved the generalized spin-statistics relation. However, 
all the formulations have been done in the Coulomb gauge. As was suggested in section 1, 
if the anyonicity of $ obtained in that gauge is really gauge-independent and thus physically 
meaningful, it should also be obtained in the other gauges. The anyonicity originates from 
the graded commutation relation. Now, in order to show that it is not a gauge artifact, we 
take the Lorentz covariant gauge and compute the product $(x)$(g). 

In the Lorentz covariant gauges, the only non-trivial commutators are 



Gauge-invariant anyon operators 6075 

and the other commutates are canonical [SI. Then the product &z)&y) is evaluated as 

J(x)$(y) = ei("/"JA's-YJ~(y)~(x) (45) 

where 

A(z - y)  = - 2 ~ j j  dZz D'(z - t ) D j ( y  - y) . (46) 

Following the analysis in [7. 1 I] for the case in which the support of the distribution function 
D' degenerates into a space-like string, A(x - y) reads 

s 
anticlockwise 

clockwise 
A(= - y) = (47) 

where (anti) clockwise corresponds to the situation that y is moved around x in a (anti) 
clockwise sense. Thus equation (45) becomes 

&z)&y) - e*'n'K&y)&z) = o (48) 

which is just the graded commutation relation (22) derived in the Coulomb gauge. Since 
this commutator implies the anyonicity of 4, it may be concluded that the anyonicity is still 
valid in the Lorentz covariant gauge. 

The gauge independence of the anyonicity puts the identification of the gauge-invariant 
operator 6 with the anyon field on a firmer footing, and means that the composite operator 
6 may become the fundamental field of the anyon field theory. 

We now return to the anyonicity itself and make some comments on the role of its 
origin. Reviewing our formulations, the anyonicity of 4 comes from the two independent 
factors which are the presence of the cs term and the distribution function D'. The graded 
commutators which are the relations between multianyons come from the cooperations of 
these two factors. On the other hand, the appearance of both charge and magnetic flux, 
which is the property of the single anyon, is governed only by the Cs term. In this sense, 
the role of the cs term is two-fold, while that of the distribution function D' is single-fold. 

In conclusion, we have studied the gauge-invariant anyon operator 4 which is 
constructed based on relativistic field theory and we have shown that the anyonic properties 
exist. The generalized spin-statistics relation has been obtained. 

Finally, some comments are in order. Firstly, the operator studied so far does not contain 
the angle function, which appears only in the final result as, for example, in equation (20). 
Thus it may be different from that which can be seen in some previous works [4,14] where 
the angle function was contained explicitly in the anyon operator. Secondly, the system 
considered here is the complex scalar field theory coupled to the CS term, which may be 
thought of as the simplest one allowing anyonic excitations. As a further study in this 
direction, one may consider the Maxwell-Chern-Simons theory with relativistic matter in 
order to investigate whether the properties of anyons still survive after inclusion of the 
Maxwell kinetic term. 
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